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Timothy Barth, NASA Ames Research Center 

Error Representation for Time Dependent Calculations 
 
For better or worse, our physical world is constantly evolving in time. Many 
important physical phenomena depend fundamentally on time either deterministically 
or through dynamical system behavior. These leads to a multitude of open problems 
associated with identifying, quantifying, and controlling numerical errors in complex 
time dependent numerical simulations. For example, in turbulent flow simulations it 
is well known that the control of pointwise solution errors quickly becomes an 
insurmountable task as the flow Reynolds number increases but the control of errors 
occurring in statistics and space-time averaged quantities may still be tractable.  
In this presentation, we pursue the representation of numerical solution errors in 
space-time using standard duality techniques as succinctly described in [1,2]. For 
quantities of interest that are mathematically described as functionals, these 
techniques provide the precise relationship between numerical solution errors and 
weighted combinations of computable element residuals. The goal of this 
presentation is not to give some precise recounting of this theory, but rather to show 
the magnitude and structure of terms arising in this error representation formula for 
"real life" time dependent compressible Navier-Stokes flow problems.  
To the novice observer, the magnitude and structure of these error representation 
terms may not always follow the intuition of the observer. A common 
mischaracterization of the error representation theory described above is that the 
residual weights appearing in the error representation formula are directly related to 
the solution, φ of a linearized dual (adjoint) problem. In fact, for Galerkin FE 
methods the weights actually only depend on φ-πhφ where πh is any projection into 
the primal numerical approximation space. Consequently, when φ exhibits sufficient 
regularity, the error estimation weights do not depend essentially on φ but rather the 
derivatives of φ. This has rather profound implications in the representation of 
solution errors that can sometimes lead one's intuition astray.  
The presentation of numerical results will hopefully accentuate the challenges and 
difficulties in space-time error representation as well as stimulate fruitful discussions 
addressing the feasibility of genuine error control for time dependent problems. 

 
[1] K. Ericksson, D. Estep, P. Hansbo and C. Johnson, Computational Differential Equations, 
Cambridge Press., 1996. 
[2] R. Becker and R. Rannacher, "An Optimal Control Approach to A-Posteriori Error 
Estimation in Finite Element Methods, Acta Numerica, 2001. 
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Susanne Brenner 

Fast Solvers for C0 Interior Penalty Methods 
 

C0 interior penalty methods are discontinuous Galerkin methods for fourth order 
elliptic boundary value problems that have many advantages. In this talk we will first 
give a brief introduction to C0interior penalty methods and then discuss multigrid and 
domain decomposition methods for solving the resulting systems. We will present 
convergence results for the V-cycle, W-cycle and F-cycle multigrid algorithms, and 
also condition number estimates for two-level additive Schwarz preconditioners. 
Numerical results will 
also be reported. 
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John Burns, Virginia Tech  

 

Approximation and numerical methods for design and optimization of PDE 
systems 

 

The problem of constructing numerical schemes for optimization based design and 
control of infinite dimensional systems leads to technical and practical issues that are 
not present if one is interested only in simulation. This observation is often stated in 
the form: 

An approximation scheme “good for simulation” may not be suitable 
for design, control or optimization. 

Although numerous researchers have noted this point over the past three decades, the 
interpretation of this statement varies widely from area to area. The basic idea as 
stated above is rather vague, it is often ignored and sometimes (in certain special 
cases) it is not valid. However, if this issue is ignored when one develops an 
approximation scheme for control design and optimization, then the resulting 
numerical algorithm may not converge to the optimal design and hence fail to 
produce accurate and useful results. In addition, even if the approximation scheme 
converges, the resulting finite dimensional problem may be ill conditioned and 
difficult to solve. 
Most numerical schemes for approximating systems governed by partial differential 
equations (PDEs) developed during the past fifty years has focused on methods that 
provided convergent and efficient simulations. In recent years, considerable work has 
been devoted to the problem of constructing numerical and computational methods 
specifically for design, control and optimization of PDE systems. The applications of 
these methods are immense in number and include aerodynamic design, flow control, 
superconductivity, nano-technology, inflatable space structures, control of epidemics, 
cancer and other biological systems. For example, Gunzburger and co-workers have 
produced outstanding results in the broad areas of flow control, aerodynamic design 
and optimization of PDE systems. These results and other recent developments have 
produced a better understanding of some key theoretical and computational issues 
that impact this field. 
Although it is obvious that one must introduce approximations into the design 
process at some point in the analysis, it is not always clear at what point 
approximations should be introduced. Often this issue is stated in terms of 
“approximate then-design” or “design-then-approximate” approaches. When 
“approximate-then-design” methods are used, the numerical scheme must produce a 
finite dimensional design-optimization problem with a (sub)optimal solution. The 
point here is that in order to develop approximation schemes for design, control and 
optimization of infinite dimensional PDE systems, one must first ensure that certain 
design properties are preserved under the approximation. Once this issue is resolved, 
it is important to consider the problem of numerically solving the finite dimensional 
problem. In particular, it is possible to construct several numerical schemes that lead 
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to finite dimensional design problems with suboptimal solutions, but the resulting 
finite dimensional problems may differ dramatically in conditioning and 
computational complexity. 
Clearly it is impossible to address all potential issues so we focus on a few of these 
points and indicate how they impact the construction of practical numerical methods 
for design and control. In particular, we use the LQR control problem to illustrate the 
ideas and to clearly identify additional requirements that need to be placed on an 
approximation scheme to ensure convergence of the optimal designs. Moreover, 
these requirements also play a role in determining mesh independence of the 
Kleinman-Newton algorithm. In particular, dual convergence and preservation of 
exponential stability (POES) play central roles in both convergence and mesh 
independence. 
In this presentation we focus on these issues and suggest areas where the numerical 
PDE community can have a big impact in optimization based design and control. We 
give a brief review of what is known about approximation schemes for the infinite 
dimensional LQR control problem and present new results that relate mesh 
independence to dual convergence and the preservation of control system properties 
under approximation. Finally, we provide applications and numerical examples to 
illustrate these ideas. 
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Suncica Canic, University of Houston 

Fluid-Structure Interaction in Blood Flow 
We will focus on a fluid-structure interaction problem arising in modeling blood flow 
through compliant (elastic/viscoelastic) arteries. The model is based on the viscous 
incompressible Navier-Stokes equations modeling blood flow in medium-to-large 
arteries, coupled with the elastic/viscoelastic Koiter shell equations modeling the 
dynamics of arterial walls. The resulting problem is of hyperbolic-parabolic type 
coupling wave propagation in arterial walls with the flow of a viscoelastic 
incompressible (Newtonian) fluid. Due to the hyperbolic nature of arterial wave 
propagation and due to the fact that the density of arterial walls is close to the density 
of the fluid, this fluid-structure interaction problem suffers from various difficulties 
associated with the lack of smoothing in the iteration procedures typically employed 
in the theoretical and numerical solution methods. To understand the main underlying 
difficulties, and to provide a model that can be efficiently solved numerically using 
one-dimensional methods, we derived a two-dimensional (``almost'' one-
dimensional) effective model obtained from the three-dimensional, axially symmetric 
problem by using homogenization theory for porous media flows. The resulting, 
effective model, is of Biot-type with memory. It captures the main features of blood 
flow in elastic/viscoelastic arteries. A comparison between the numerical simulations 
of the effective equations and the experimental measurements performed at the Texas 
Heart Institute in Houston showed excellent agreement. In particular, the viscoelastic 
arterial wall model captured well the hysteresis behavior of human and canine 
arteries. We will discuss the existence of a solution to the effective free-boundary 
problem and the difficult challenges and new insights that it brings towards  the 
understanding of the fluid-structure interaction in blood flow. Collaborators include: 
A. Mikelic (University of Lyon 1, FR, J. Tambaca, University of Zagreb, Croatia, G. 
Guidoboni, UH, Dr. Z Krajcer, Texas Heart Institute, Dr. C. Hartley, Baylor College 
of Medicine, and Dr. D. Rosenstrauch, Texas Heart Institute. 
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M. Gregory Forest, UNC at Chapel Hill 

Nano-rod composite films:  flows and effective properties 
 

There is a technological interest in composite films with nano-rod and nano-platelet 
inclusions at small volume fractions. Unlike fiber processes, shear-dominated film 
flow in confined spaces does not yet yield robust, predictable, controllable nano-
composite film properties; indeed, there are almost no property characterizations. We 
present benchmark numerical predictions of complex orientational distributions of 
the rod ensemble.  We start with assumed homogeneity in space, with the flow 
imposed as simple linear flow, then move to 1-d and 2-d spatial morphology with 
solvers of the coupled Smoluchowski equation for the rod ensemble and Navier-
Stokes equations for the flow feedback.  We then map those results onto effective 
property tensors of the nano-composite film, based on homogenized volume 
averaging.  Next, we study percolation and cluster statistics of the flow-processed rod 
ensembles; percolation occurs at remarkably low volume fractions due to high aspect 
ratio of the inclusions.  These results call into question all property characterization 
methods that ignore contacts and percolating paths of the inclusions.  Time 
permitting, we raise the challenge of controlling properties. This is joint work with 
Xiaoyu Zheng1, Qi Wang2 and Ruhai Zhou3. 
 

 
(1) Mathematics & Institute for Advanced Materials, Nanoscience & Technology, 
University of North Carolina at Chapel Hill, Campus Box 3250, Chapel Hill, NC 
27599-3250 
(2) Department of Mathematical Sciences, Florida State University, Tallahassee, FL 
(3) Department of Mathematics and Statistics, Old Dominion University, Norfolk, 
VA 
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Matthias Heinkenschloss, Rice University 

SQP algorithms with inexact linear system solvers for the solution of PDE 
constrained optimization problems 

 
Sequential quadratic programming (SQP) algorithms are the state-of-the-art for the 
solution of large-scale nonlinear programming problems. These methods have also 
been used for the solution of several PDE constrained optimization problems. 
However, for these problems, the rigorous application of SQP algorithms poses 
several challenges. One set of challenges arises from the need to solve the large-scale 
linear systems that arise inside SQP algorithms and which involve linearized PDEs 
iteratively. In this case, one has to design implementable stopping criteria that ensure 
convergence of the SQP method while avoiding "over-solving" of the linear systems, 
one has to devise new ways of rigorously handling negative curvature, and one has to 
design effective preconditioners for the solution of so-called KKT systems. I will 
describe our approach to overcome these challenges, outline our SQP algorithm with 
inexact linear system solvers that is backed by rigorous convergence theory, and 
illustrate its performance on several PDE constrained optimization problems. 
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Thomas J.R. Hughes, ICES UT Austin 

Designing the PDE Algorithms of the Future:  An Example of the Role of 
Optimization in Variational Multiscale Analysis 

This talk is based on joint work with Giancarlo Sangalli.  Optimization has played a 
significant role in at least one area of algorithm development, specifically, the 
integration of constitutive equations for inelastic materials.  It is fair to say that ideas 
of convex optimization completely revolutionized this application during the last two 
decades and are now almost universally employed.   But this application involves 
ODEs.  In this talk we introduce ideas of optimization to constrain the fine-scale field 
in the variational multiscale analysis of PDEs.  This approach enables us to derive an 
explicit formula for the fine-scale Green’s function, a fundamental but heretofore 
elusive object in variational multiscale analysis. The formula is expressed in terms of 
the classical Green’s function and a projector, derived from the optimality criterion, 
that uniquely defines the decomposition of the solution into coarse and fine scales. 
The theory is presented in an abstract operator format and subsequently specialized 
for the advection-diffusion equation. It is shown that different projectors lead to fine-
scale Green’s functions with very different properties. For example, in the advection-
dominated case, the projector induced by the H1-seminorm yields a fine-scale 
Green’s function that is highly attenuated and localized. These are very desirable 
properties in a multiscale method, and ones that are not shared by the L2-projector.  
By design, the coarse-scale solution attains optimality in the norm associated with the 
projector. This property, combined with a localized fine-scale Green’s function, 
indicates the realizability of effective methods with local character for dominantly 
hyperbolic problems.  The approach leads to a new class of stabilized methods, and 
the relationship between H1-optimality and SUPG is elucidated.  It is suggested that 
appropriate optimality criteria may provide a rational pathway for deriving new and 
more effective algorithms for PDEs and may eventually replace ad hoc constructs 
currently in use. 

References: 

T.J.R. Hughes,  “Multiscale phenomena: Green’s functions, the Dirichlet-to-
Neumann formulation, subgrid scale models, bubbles and the origins of stabilized 
methods,” Computer Methods in Applied Mechanics and Engineering, 127 (1995), 
387-401. 

T.J.R. Hughes, G.R. Feijoo, L. Mazzei, and J.B. Quincy, “The variational multiscale 
method - a paradigm for computational mechanics,” Computer Methods in Applied 
Mechanics and Engineering, 166 (1998), 3-24.  
 
T.J.R. Hughes and G. Sangalli, “Variational multiscale analysis: The fine-scale 
Green's function, projection, optimization, localization, and stabilized methods,” 
ICES Report 05-46, UT-Austin, November 2005. 

J.C. Simo and T.J.R. Hughes, Computational Inelasticity, Springer, New York, 1998. 
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Angela Kunoth, University of Bonn, Germany 

Speed Windsurfing: Modeling and Numerics 
Many windsurfers want to achieve enough speed for planing, a certain state of 
gliding over the water surface which depends, in addition to a strong enough wind, 
on the size of the board and its fin and of the size of the sail. We assume that the 
surfer has an optimal technique to reach the maximal speed and that his/her weight 
uniquely determines the strength with which he/she is able to hold the sail by means 
of the boom with hands and/or a harness. Moreover, any experienced windsurfer 
knows which board to pick to balance between sufficient stability and speed. The 
current world record of 48.7 kn (90.2 km/h) was achieved on April 10, 2005, in the 
’French Trench’ near St. Maries de la Mer (France) where a certain natural tunnel 
generates very high wind speeds and which is too narrow for the sea to produce any 
waves, with a board of size 220 cm (64 ltr) with a 28 cm fin and a 10 m2 sail; the 
weight of the surfer was 117 kg [2]. My talk is concerned with modeling the 
movement of the windsurfer and determining over a finite number of given sails of 
prescribed shape the optimal sail by which he can reach maximal velocity. Naively, 
one thinks that the maximal speed occurs by picking the sail with largest area of 
attack for the wind that, however, opposes the requirement that the surfer needs to be 
able to still hold the sail. Too large a sail for his weight will force him to fall into the 
water. In that situation, picking too large a sail may present an additional problem: in 
case of a sea level too deep for him to stand, he would have to use a water start which 
is very energy-consuming and, already after a few unsuccessful attempts, a dangerous 
enterprise, in particular, in case of offshore wind with high wind speed and large 
waves, which, in turn, often do not allow for a beginner-type basic start. 
Summarizing, it is of vital importance for the practical surfer to pick the sail of the 
right size that allows him both for planning and, simultaneously, is safe enough for 
him to use even in case of offshore wind. Thus, we consider the following problem: 
Given a finite number of sails of different sizes with prescribed shapes, given the 
speed of the wind, the weight of a surfer, the size and shape of a surfboard and a 
corresponding fin; determine the sail and the direction such that the windsurfer 
achieves maximal speed. Here not only want to solve this problem with sufficient 
accuracy – in view of this particular application, we wish to provide the solution by 
developing a program which runs on a common laptop computer at a beach station in 
an amount of time which is less than five minutes, an estimated time that an 
experienced surfer needs to switch the sail twice. We develop a simple model for 
describing the movement of the windsurfer for maximizing the speed in terms of a 
nonlinear ODE. I would like to present a number of numerical results from [1] and 
would like to conclude with some remarks on the validation of our model compared 
with the world record data and on improving the simple model. 
References 
[1] A. Kunoth, M. Schlichtenmayer, Chr. Schneider, Speed Windsurfing: Modeling and 
Numerics, Manuscript, Institut fuer Numerische Simulation, Universit¨at Bonn, March 2006. 
[2] The Professional Windsurfers Association: 
http://www.pwaworldtour.com/pwa.sys/sailors/sailor,205 
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Rich Lehoucq, Sandia National Laboratories  

On stabilized finite element methods for the Stokes problem in the small time-
step limit 

 
Recent studies indicate that consistently stabilized methods for unsteady 
incompressible flows, obtained by a method of lines approach, may experience 
difficulty when the time step is small relative to the spatial grid size. Using as a 
model problem the unsteady Stokes equations, we show that the semi-discrete 
pressure operator associated with such methods is not uniformly coercive. We prove 
that for sufficiently large (relative to the square of the spatial grid size) time steps, 
implicit time discretizations contribute terms that stabilize this operator. However, 
we also prove that if the time step is sufficiently small, then the fully discrete 
problem necessarily leads to unstable pressure approximations. The semi-discrete 
pressure operator studied in the paper also arises in pressure projection methods, 
thereby making our results potentially useful in other settings. This is joint work with 
Pavel Bochev and Max Gunzburger. 
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Tom Manteuffel, University of Colorado, Boulder 

Optimizing solution strategies for systems of PDEs 
 
In any computation, the bottom line should be accuracy per computational cost. In 
this talk a Nested Iteration-Newton-FOSLS-AMG method is presented that yields 
approximate solutions to nonlinear systems of PDEs with any desired accuracy in 
several dozen work units. A work unit is the amount of computation required to 
evaluate the nonlinear equation on the finest grid.  We consider incompressible 
Navier/Stokes, geometrically nonlinear elasticity, and coupled fluid/structure 
problems as test problems. 
 
In addition, a local adaptive mesh strategy will be presented that attempts to optimize 
efficiency. In this context, efficiency is defined to be accuracy per computational 
cost, or, equivalently, work times error. This approach starts on a coarse mesh and 
chooses refinement based on a FOSLS a posteriori error measure to optimize 
efficiency. After several levels of refinement, the error is nearly equi-distributed 
across elements. Subsequent refinements are essentially global, which minimizes 
load balancing on the finest grids. 
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John Shadid, Sandia National Laboratories 

Efficient Fully-coupled Solution of Transport/Reaction Systems with Newton-
Krylov Methods* 

The need to simulate fluid flow systems with thermal energy and mass species 
transport, along with non-equilibrium chemical reaction is common in advanced 
technology applications. These systems are strongly coupled, highly nonlinear and 
characterized by multiple physical phenomena that span a very large range of length 
and time scales. These characteristics make the scalable, robust, accurate, and 
efficient computational solution of these systems extremely challenging. 
 
This presentation will overview a number of the important solution methods that our 
research group has applied in the computational simulation of transport/reaction 
systems. These include, fully-implicit time integration, direct-to-steady-state solution 
methods, continuation, bifurcation, and optimization techniques.  The resulting large 
sparse linear systems that are generated by these methods are solved by the 
application of parallel preconditioned Krylov methods employing additive Schwarz 
domain decomposition (DD) and multi-level preconditioners. The multi-level 
preconditioners include geometric and algebraic methods along with approximate 
block factorization preconditioners. 
 
To demonstrate the capability of these methods I will present simulation results for 
representative low heat release and high heat release transport / reaction simulations. 
In this context I will discuss robustness, efficiency, and the parallel and algorithmic 
scaling of solution methods. 
 

 
*This work was partially funded by the Department of Energy's Mathematical, Information 
and Computational Sciences Division, and was carried out at Sandia National Laboratories 
operated for the U.S. Department of Energy under contract no. DE-ACO4-94AL85000 
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Mikhail Shashkov, Los Alamos National Laboratory 

Mimetic Finite Difference Methods for Partial Differential Equations and Discrete 
Vector and Tensor Analysis 

 
In past 15 years we have developed new high-quality, mimetic finite-difference 
methods based on discrete analog of vector and tensor analysis (DVTA). The basis of 
DVTA is the design of discrete operators that preserve certain essential properties of, 
and relationships between, the corresponding analytic operators. The DVTA is the 
basis for new techniques for large-scale numerical simulations approximating the 
solution of partial differential equations (PDEs). The new methods provide a 
significant extension of the well known and useful finite volume methods and are 
designed to more faithfully represent important properties of physical processes and 
the continuum mathematical models of such processes. Algorithms based on these 
techniques are used for modeling high-speed flows, porous media flows, diffusion 
processes, and electromagnetic problems. In this presentation we will describe 
DVTA and demonstrate how it can be used to construct high-quality finite-difference 
methods for PDEs. 
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Ralph C. Smith, NC State University 

Model Development, Numerical Approximation and Control Design for High 
Performance Nonlinear Smart Material Systems 

 
High performance transducers utilizing piezoceramic, electrostrictive, 
magnetostrictive or shape memory elements offer novel control capabilities in 
applications ranging from flow control to precision placement for nanoconstruction.  
To achieve the full potential of these materials, however, models, numerical methods 
and control designs that accommodate the constitutive nonlinearities and hysteresis 
inherent to the compounds must be employed.  Furthermore, it is advantageous to 
consider material characterization, model development, numerical approximation, 
and control design in concert to fully exploit the novel sensor and actuator 
capabilities of these materials in coupled systems. 
 
In this presentation, the speaker will discuss recent advances in the development of 
model-based control strategies for high performance smart material systems.  The 
presentation will focus on the development of unified nonlinear hysteresis models, 
nonlinear distributed system models, inverse compensators, reduced-order 
approximation techniques, and nonlinear control strategies for high precision or high 
drive regimes.  Significant attention will be focused on the discussion of numerical 
techniques and control designs that facilitate real-time implementation of smart 
material actuators and sensors operating in highly nonlinear regimes.  Examples will 
be drawn from problems arising in structural acoustics, high-speed milling, 
deformable mirror design, artificial muscle development, tendon design to minimize 
earthquake damage, and atomic force microscopy. 
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Tim Trucano, Sandia National Laboratories 

Key Principles and Objectives of V&V: A Sandia ASC Perspective 
 

In this talk I will review the key principles and objectives of computational science 
verification and validation (V&V) from the perspective of the Sandia ASC (NNSA 
Advanced Simulation and Computing) V&V program. I will quickly summarize core 
concepts associated with V&V. Then, I will highlight some technical themes that are 
specific to verification, that is a rigorous numerical accuracy assessment, and to 
validation, that is rigorous physical accuracy assessment. For example, a critical 
technical theme in verification, at least for numerical partial differential equation 
solutions, is convergence. A critical technical theme for validation is uncertainty 
quantification. I will suggest how the technical themes come together in the arena of 
computational credibility for consequential application of computational science, 
especially in the relationship to complex decision-making. My main goal for this talk 
is to emphasize the degree to which V&V is an important and ongoing challenge for 
computational science. 
 

 

A keynote presentation that will take place during the conference dinner on Friday, 
April 21, 2006. 

 


